Dennis E. Hallahan, MD

Elizabeth H and James S McDonnell III Distinguished Professor of Medicine

Washington University in St. Louis (WU)

The Hallahan laboratory has discovered several molecular targets for drug development in cancer. Discovery strategies have included Proteomics and lipidomics. These discoveries have gone on to preclinical and clinical drug development of a number of novel cancer drugs. Most notable are inhibitors of PLA2 and the LPA receptor. More recently, the Hallahan laboratory has identified TIP1 and GRP78 as molecular targets to enhance the efficacy of radiation therapy. Dr. Hallahan’s lab has developed monoclonal antibodies and scFv antibodies to radiation inducible neoantigens that are specific to cancer. These antibodies activate immune effector cells. They have also been conjugated to therapeutic agents such as radiopharmaceuticals. More importantly, antibodies to radiation inducible TIP1 and GRP78 show efficacy in mouse models of human cancer. The Hallahan laboratory has developed several drug delivery systems using nanoparticles and liposomes. These particles have been conjugated to peptide ligands that bind to radiation inducible receptors in cancer. This approach has increased the bioavailability of doxorubicin and paclitaxel specifically to cancer. Pre-clinical efficacy and proof of concept studies have been completed. Current research combines our lead cancer specific ligand conjugated to PEG in liposomal formulation.